Preliminary communication

SYNTHESIS AND REACTIVITY OF TRIMETHYLPHOSPHITE COMPLEXES OF COBALT, RHODIUM AND IRIDIUM. CRYSTAL AND MOLECULAR STRUCTURE OF [IrH(P(OMe)₃)₄(P(OMe)₂OSnMe₂Cl₂)][SnCl₃Me₂]

PETER B. HITCHCOCK, STANLEI I. KLEIN and JOHN F. NIXON*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BN1 9QJ, East Sussex (Great Britain)

(Received September 16th, 1982)

Summary

Syntheses of $[M(P(O)(OMe)_2)(P(OMe)_3)_4]$ (M = Co, Rh, Ir) are reported and variable temperature ³¹P NMR studies on the iridium complex are described. Hydrogen reacts differently with the Ir and Rh complexes giving $[IrH_2(P(O)(OMe)_2)(P(OMe)_3)_3]$ and $[RhH(P(OMe_3)_4]$, respectively. The crystal and molecular structure of the novel compound $[IrH(P(OMe)_3)_4 - (P(OMe)_2OSnMe_2Cl_2)][SnCl_3Me_2]$ is described.

The recent report [1] of the synthesis and chemistry of certain binary zerovalent transition metal-phosphite complexes prompts us to report related studies on Co^I, Rh^I and Ir^I compounds. Treatment of $[Ir(\eta^{5} - C_{9}H_{7}) (C_2H_4)_2$ [2] with an excess of P(OMe)₃ affords the iridium(I) complex $[Ir(P(O)(OMe)_2)(P(OMe)_3)_4]$ (I), which was also obtained by treatment of $[IrCl(P(OMe)_3)_5]$ with: (a) Na in ether, (b) Na or K/Hg in ether or (c) with warm acetone. The ${}^{31}P{}^{1}H$ NMR spectrum of I at room temperature indicated that the complex is fluxional, exhibiting an A₄M spectrum (δ (P_A)-32.1, δ (P_M) -96.6 ppm, (relative to $P(OMe)_3$; $J(P_AP_M)$ 101.1 Hz). At $-77^{\circ}C$ (Fig. 1) the spectrum changes to an A₃BM spin system δ (P_A) -28.5, δ (P_B) -31.0, δ (P_M) -93.1 ppm; J(P_A P_B) 55.8 Hz, J(P_A P_M) 57.8 Hz, J(P_B P_M) 569.1 Hz. Interestingly the appearance of the $P(O)(OMe)_2$ resonance at intermediate temperatures [2], is identical to that of the hydride resonance in $[IrH(P(OCH_2)_3CPr^n)_4]$, in which it has been proposed that the hydrogen is on a tetrahedral face and the lowest energy path for interchanging the phosphorus environments involves a tetrahedral-jump rearrangement mechanism [3,4]. We consider such a process unlikely for the bulkier $P(O)(OMe)_2$ group in I.

Fig. 1. ³¹P $\{^{1}H\}$ NMR spectrum of I, (a) at room temperature and (b) at $-77^{\circ}C$ in toluene.

Complex I adds hydrogen slowly at room temperature to yield the iridium(III) dihydride complex $[IrH_2P(O)(OMe)_2(P(OMe)_3)_3]$ (II), whose *cis*stereochemistry was unambiguously established by ³¹P and ¹H NMR studies.

These results led us to reinvestigate the reaction of $[Rh(\eta^5 - C_5H_5) - (C_2H_4)_2]$ and $P(OMe)_3$ which was reported [5] to form $[Rh_2(P(OMe)_3)_8]$ largely based on ³¹P NMR data. We now report that the product from this reaction is $[Rh(P(O)(OMe)_2(P(OMe)_3)_4]$ (III) and that it exhibits a similar temperature dependent ³¹P NMR spectrum to I.

Both I and III react quickly with MeI to form $M(P(OMe)_3)_5 + 1^-$ but in contrast to the behaviour of I, complex III reacts rapidly with hydrogen at room temperature to afford quantitative yields of RhH(P(OMe)_3)_4 and PH(O)(OMe)_2 as evidenced by carefully monitoring the reaction by ³¹P NMR spectroscopy.

The basic nature of the metals in I and III is reflected by their ready reaction with HX (X = BF₄, p-CH₃C₆H₄SO₃) the products being [IrH(P(O)-(OMe)₂)(P(OMe)₃)₄] X (IV) and [Rh(P(OMe)₃)₄X] plus PH(O)(OMe)₂. The ³¹P NMR spectrum of the cation in IV established the *cis*-stereochemistry and it bears a close similarity to that of the neutral complex

 $[RuMe(P(O)(OMe)_2)(P(OMe)_3)_4]$ (V), formed [6] via a thermally induced methyl migration reaction of the zerovalent complex $[Ru(P(OMe)_3)_5]$.

We have confirmed independently the very recent report by Muetterties et al. [7] that $[Co(P(O)(OMe)_2)(P(OMe)_3)_4]$ is formed in the reaction between $[Co(P(OMe)_3)]_nCl (n = 3,4,5)$ with sodium or potassium amalgam and the existence of a paramagnetic monomer $[Co(P(OMe)_3)_4]$ and dinuclear $[Co_2(P(OMe)_3)_8]$ indicates the complexity of this type of system. By careful control of the phosphite concentration we have recently obtained NMR spectroscopic evidence for the complex $[Rh_2(P(OMe)_3)_8]$ and mercury contain-

Fig. 2. Molecular Structure of the cation $[IrH(P(OMe)_3)_4(P(OMe)_2OSnCl_2Me_2)]^+$. Ir-P(1) 2.270(10); Ir-P(2) 2.382(13), Ir-P(3) 2.322(10); Ir-P(4) 2.331(11); Ir-P(5) 2.280(11); P(3)-O(1) 1.51(2); P(3)-O(2) 1.52(2); O(1)-Sn 2.30(2) Å.

ing products from the reaction between $[M(olefin)_2Cl]_2$ (M = Rh, Ir), P(OMe)₃ and Na/Hg [8]. The crystal structure of $Co_2Hg(P(OMe)_3)_8$ has recently been described [7].

The reaction of I with Me_2SnCl_2 in dry THF gave a single product whose ¹H and ³¹P NMR spectra showed features similar to IV and elemental analysis and a single crystal X-ray structure determination confirmed the formation of the hydridoiridium(III) complex [IrH(P(OMe)_3)_4(P(OMe)_2OSnCl_2Me_2)]-[SnCl_3Me_2] (VI), in which the oxygen of the coordinated $P(O)(OMe)_2$ ligand is the donor site towards tin (see Fig. 2). Formation of the hydride $CoH(P(OMe)_3)_4$ has been briefly noted [7] in reactions of Na/Hg with $CoCl_2$ in THF in the presence of excess $P(OMe)_3$ and from $NaCo(P(OMe)_3)_4$ with Hg in THF.

Crystal data: $C_{18}H_{55}Cl_5IrO_{15}P_5Sn_2$, orthorhombic, space group Pnn2, a 31.857(4), b 13.230(2), c 10.560(2) Å, Z = 4. The structure was determined by routine heavy atom methods and refined by least squares to R = 0.077for 1972 reflections with $I > \sigma(I)$ measured on a CAD4 diffractometer. The cation structure is shown in Fig. 2 with some selected bond length data. The anion $[SnCl_3Me_2]^-$ has a trigonal bipyramidal structure with the methyl groups occupying equatorial positions.

Further studies on these systems will be reported separately.

Acknowledgement. We thank the Brazilian Government (CNPq) for a Scholarship (to S.I.K.).

References

- 1 H.W. Choi and E.L. Muetterties, J. Amer. Chem. Soc., 104 (1982) 153 and refs. therein.
- 2 S.I. Klein and J.F. Nixon, unpublished results.
- 3 E.M. Hyde, J.R. Swain, J.G. Verkade and P. Meakin, J. Chem. Soc. Dalton, (1976) 1169.
- 4 P. Meakin, E.L. Muetterties and J.P. Jesson, J. Amer. Chem. Soc., 94 (1972) 5271.
- 5 R. Mathieu and J.F. Nixon, J. Chem. Soc. Chem. Commun., (1974) 147.
- 6 R.K. Pomeroy and R.F. Alex, J. Chem. Soc. Chem. Commun., (1980) 1114.
- 7 E.L. Muetterties personal communication and E.L. Muetterties, J.R. Bleeke, Z.Y. Yang and V.W. Day, J. Amer. Chem. Soc., 104 (1982) 2940.
- 8 S.I. Klein and J.F. Nixon, in preparation.